Using radiometric data to generate automated alteration maps based on residual values

The radiometric spectrometry method is a geophysical tool used to estimate concentrations of potassium, uranium, and thorium by measuring gamma rays emitted by radioactive isotopes of these elements during radioactive decay. All rocks and soils contain radioactive isotopes, and almost all gamma rays detected close to the Earth’s surface are the result of natural radioactive decay of potassium, uranium, and thorium. Gamma rays have fairly high penetrating power and can travel about 35 centimetres through rock and several hundred metres through air. The gamma-ray spectrometry method has many applications but is mainly used as a geological mapping tool. Changes in lithology or soil type are often accompanied by changes in radioelement concentrations. Some alteration profiles, such as potassic alteration, which is often associated with hydrothermal deposits, can be detected using gamma ray spectrometry.

In outcropping or low-coverage environments, it is thus possible to map the different lithologies and potentially estimate changes in potassium and uranium concentrations caused by alteration processes. For this case study, we used automated clustering algorithms to establish the different lithological groups according to the radiometric and magnetic signatures, coupled with geological calibration. Once the dictionary of lithology is created for the study area, it is possible to estimate changes in mass for potassium and uranium, which are characteristic of the various alteration processes. Indeed, the immobile nature of thorium allows us to estimate thorium-potassium and thorium-uranium regression and also actually calculate the residual values for the more mobile elements, potassium and uranium, which can be affected by hydrothermal fluid circulation. This mapping method makes it possible to highlight zones of leaching and deposition of these radiometric elements.

This approach permits rapid generation of much more accurate alteration maps than the ternary maps traditionally used for exploration of mineral systems associated with IOCG, uranium, porphyry, and other systems that have a large footprint and affect potassium and uranium compositions.

Case study: Labrador Trough Alteration Map, Canada

In order to test the workflow proposed above, we chose the Labrador Trough at the Québec-Labrador border because of its low level of Quaternary cover and potential for IOCG mineral deposits. These types of deposits come with a substantial alteration footprint that might be mappable using the automated approach proposed here. The data was downloaded from the Quebec public repository (Fig.1) and regridded at a 500m x 500m resolution for fast processing.

Figure 1: High resolution Thorium concentration (ppm). CC BY 4.0 - SIGÉOM, Gouvernment of Québec 2019

First, lake and swamp-environment signatures were taken out of the survey using a first round of clustering and domaining. This allowed us to concentrate on the signatures associated with the rock units. Following this first step, the magnetics data was also processed using a high pass filter to focus on the short-wavelength signature associated with near-surface changes in the magnetics. The data set consisting of the potassium, thorium, uranium, and magnetics was run through a hierarchical clustering algorithm. This algorithm enabled us to group the datapoints (grid cells) into domains of similar signatures in the 4 input dimensions. The advantage of using this type of algorithm lies in its interpretability and customizability in terms of resulting clusters. Given the model’s performance and entropy (Fig. 2), it was established that 8 clusters existed in the data set, representing probable geological domains.

Figure 2: Clusters representing probable geological domains.

Using those 8 geological domains, 3D regressions were estimated for potassium from uranium and thorium, for uranium from potassium and thorium and for thorium from potassium and uranium. A regression for each domain was estimated and the residual values for each element were then calculated (Fig. 3).

A regression for each domain was estimated and the residual values for each element were then calculated.

Lastly, the 3 residual maps are combined to generate an alteration map for potassium and uranium mass balances potentially associated with IOCG alteration (Fig. 4). When comparing the alteration map to the known deposits, certain trends become visible (Fig. 4). It especially appreciable around the Romanet Horst region (Fig. 5).

Alteration map for potassium and uranium mass balances potentially associated with IOCG alteration with visible trends.

Alteration map of the Romanet Horst region, Canada.

Jean-Philippe is our Director of Global Consulting. He brings 10 years of mineral exploration experience including expertise in geostatistics, structural, geological, and geochemical modelling and interpretation. He is skilled in the application of machine learning to overcome geological challenges and with new methods to reduce interpretational risks with geological data. He has a wide range of experience in mineral resource estimation for precious metals, base metals and industrial minerals across diverse geological environments around the world. He obtained an MSc from Laval University. Jean-Philippe is based in Quebec-City.

Latest news

Software releases
January, 15 2019

Geoscience INTEGRATOR AI for exploration

Geoscience INTEGRATOR, the missing AI link for exploration. This unique web-based data management system is designed...
Read more
Case studies
March, 29 2015

Using predictive modelling in mineral exploration

We carried out targeting work for IOCG-style mineralisation in the Mt Dore area of QLD, Australia. We produced a 3D model and predictive exploration map...
Read more
Software tips
December, 01 2020

Editing property transparency

In GOCAD Mining Suite, when you select a property its transparency can be edited...
Read more
Software tips
May, 28 2020

Reshape using spiderwebs

GOCAD Mining Suite v19 allows you to reshape your surfaces and 2D Grids with a spiderweb editing tool...
Read more
Software tips
May, 04 2020

Sneak peek v19

Emerson-Paradigm released a short video to help users become acquainted with the redesigned interface. Watch this short video ...
Read more
Software tips
January, 20 2020

Adding reference images

You can add reference images to mine fusion models and hazard reports in Geoscience INTEGRATOR to better orient yourself visually.
Read more
Software tips
February, 03 2019

Organizing files as data sets

In Geoscience INTEGRATOR, a data set is often composed of a group of files of various formats along with metadata. These can be grouped...
Read more
Software releases
May, 28 2020

What’s new in software?

We have three releases coming soon. Explore redesigned UI, experience performance enhancement, and try out new tools for data processing and modelling...
Read more
News
December, 06 2019

Women Geoscientists in Canada

We are proud sponsors of WGC, advocates for increased gender balance within geosciences...
Read more
Software tips
April, 03 2020

Using hot keys

Use hot keys in GOCAD Mining Suite to optimize your experience to help navigate the interface and execute commands more quickly and easily. Try them out!
Read more
Software tips
July, 20 2020

Data set summaries

In Geoscience INTEGRATOR The Data set explorer provides simple, immediate ‘dashboard’ access to all the data sets, and their summary information...
Read more
Developer’s sandbox
September, 13 2013

R&D projects in data management

Over the past couple of years we have been developing skills and technology in practical, business-focused data management as a solid foundation for modelling, analysis, and interpretation.
Read more

Please contact our team for additional information about our products and services