Geophysical detection of hydrothermal alteration footprints

Presented at AEGC2018 by John McGaughey, President, Mira Geoscience

The use of geophysical data is appealing when exploring deep or under cover because, although it does not directly respond to rock chemistry, it often provides uniform areal data coverage. In deep and undercover exploration contexts, direct recognition of footprint-scale hydrothermal alteration from geophysical data is the ultimate goal of geophysical interpretation—there cannot be any expectation of a direct ore deposit signature in exploration data, and understanding footprint-scale alteration signatures can lead directly to targets.

The key to geophysical recognition of alteration at the ore system scale is the assumption, typically met in practice, that the primary control on physical property variation across the system is formational and structural, with hydrothermal alteration a contributing secondary effect. Specialized interpretation workflows, such as described in the article above, can take advantage of this assumption to create physical property models composed of primary (formational and structural) and secondary (alteration) physical property signatures that are fully consistent with geophysical data and whatever level of geological data is available. The secondary physical property signatures are, in many cases, directly interpretable in terms of hydrothermal alteration domains.

3D geological model.

Magnetic data.

Case study: The Mutooroo Iron Project area, Australia

This is a great example of developing a geologically-based magnetic model using a variety of interpretation, modelling, and inversion techniques. Due to limited constraining data on the magnetic units, construction of the starting model was based predominantly on interpretation of magnetic data. In this instance, the goal was to first develop a geologically plausible 3D representation of homogeneous magnetic domains beneath non-magnetic cover that explains the majority of the measured magnetic response. This was supported by the sparse geological data and magnetic susceptibility provided by drilling under cover. The robustness of the magnetic domains are validated by assigning a homogeneous susceptibility to each domain, forward modelling, and observing a good correlation between the predicted and measured magnetic data. A final stage of inversion to solve for local susceptibility variations within the domains highlights magnetic anomalies that may be associated with alteration and therefore become potential targets or areas of geological complexity that require further investigation. This geologically-based model, consistent with geological constraints and geophysical survey data, provides a basis for confident decision making in technical and business realms, with the ability to adapt and accommodate new and evolving information as it becomes available.

Glenn Pears – Principal Geophysicist with Mira Geoscience

Glenn joined our team a little over 15 years ago! Glenn worked closely in the above project with his colleague James Alderman. Glenn is a highly experienced geophysicist providing expertise in data integration and interpretation projects. His strengths are in geologically-constrained geophysical interpretation and inversion using GOCAD Mining Suite, data assessment, QA/QC and executing integrated interpretations.

Latest news

Software tips
November, 16 2020

Themes

Geoscience INTEGRATOR v3.5 and Geoscience ANALYST v3.2 include new themes and renamed ones to help you to locate data in a more intuitive way.
Read more
Q&As
April, 01 2019

Q&A Mineral Resources Tasmania

The construction of plausible geological models. 3D interpretation and modelling process is of a cyclical nature...
Read more
Software releases
December, 07 2020

What’s new in software?

We have three releases coming soon. Explore redesigned UI, experience performance enhancement, and try out new tools for data processing and modelling...
Read more
Software tips
November, 04 2019

Visualize structural measurements

In GOCAD you can visualize strike and dip measurements as tablets, discs, or orientation vectors by initializing Structural Graphics...
Read more
Software tips
July, 08 2019

Centering objects in the Viewport

In Geoscience ANALYST, you can automatically turn on the selection, center the view, and...
Read more
Online training
April, 20 2020

Online professional training

We are offering GOCAD Mining Suite training courses tailored to meet your specific business needs and designed to be flexible to accommodate your schedule...
Read more
Virtual Lecture – Archive
March, 25 2020

Using SimPEG in Geoscience ANALYST

Past event, view here or via our YouTube channel...
Read more
Software releases
June, 11 2019

Geoscience ANALYST release

In version 2.80, many new features and improvements are introduced. Loading and saving of the Workspace as well...
Read more
Software tips
August, 03 2020

Have you Scene this?

In GOCAD Mining Suite v19, you can save the view as a Scene by right-clicking on the 3D Viewer > (Scene) Save As…
Read more
Software tips
May, 28 2020

Reshape using spiderwebs

GOCAD Mining Suite v19 allows you to reshape your surfaces and 2D Grids with a spiderweb editing tool...
Read more
Virtual Lecture – Archive
July, 29 2020

Getting started with the Python geoh5py

Past event, view here or via our YouTube channel...
Read more
Software tips
April, 03 2020

Using hot keys

Use hot keys in GOCAD Mining Suite to optimize your experience to help navigate the interface and execute commands more quickly and easily. Try them out!
Read more

Please contact our team for additional information about our products and services